Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
translated by 谷歌翻译
最新的工业推理引擎(例如FASTRASTRANSFORMER1和TURBOTTRANSFORMER)已验证了半精度的浮点(FP16)和8位整数(INT8)量化可以极大地提高模型推断速度。但是,现有的FP16或INT8量化方法太复杂了,使用不当将大大导致性能损害。在本文中,我们开发了一个工具包,供用户轻松量化其模型以进行推理,其中提出了自适应混合精液(SAMP),以通过混合精确体系结构自动控制量化率,以平衡效率和性能。实验结果表明,我们的SAMP工具包比Pytorch和Fertransformer具有更高的速度,同时确保了所需的性能。此外,SAMP基于模块化设计,将令牌,嵌入,编码器和目标层解耦,该层允许用户处理各种下游任务,并且可以将其无缝集成到Pytorch中。
translated by 谷歌翻译
Few-shot segmentation (FSS) aims to segment unseen classes using a few annotated samples. Typically, a prototype representing the foreground class is extracted from annotated support image(s) and is matched to features representing each pixel in the query image. However, models learnt in this way are insufficiently discriminatory, and often produce false positives: misclassifying background pixels as foreground. Some FSS methods try to address this issue by using the background in the support image(s) to help identify the background in the query image. However, the backgrounds of theses images is often quite distinct, and hence, the support image background information is uninformative. This article proposes a method, QSR, that extracts the background from the query image itself, and as a result is better able to discriminate between foreground and background features in the query image. This is achieved by modifying the training process to associate prototypes with class labels including known classes from the training data and latent classes representing unknown background objects. This class information is then used to extract a background prototype from the query image. To successfully associate prototypes with class labels and extract a background prototype that is capable of predicting a mask for the background regions of the image, the machinery for extracting and using foreground prototypes is induced to become more discriminative between different classes. Experiments for both 1-shot and 5-shot FSS on both the PASCAL-5i and COCO-20i datasets demonstrate that the proposed method results in a significant improvement in performance for the baseline methods it is applied to. As QSR operates only during training, these improved results are produced with no extra computational complexity during testing.
translated by 谷歌翻译
本文认为很少发生异常检测(FSAD),这是一种实用但研究不足的异常检测设置(AD),在训练中,每个类别仅提供有限数量的正常图像。到目前为止,现有的FSAD研究遵循用于标准AD的单层学习范式,并且尚未探索类别间的共同点。受到人类如何检测异常的启发,即将所讨论的图像与正常图像进行比较,我们在这里利用注册,这是一个固有跨越类别(​​作为代理任务)固有概括的图像对齐任务,以训练类别不稳定的异常异常检测模型。在测试过程中,通过比较测试图像的注册特征及其相应支持(正常)图像来识别异常。据我们所知,这是训练单个可推广模型的第一种FSAD方法,不需要对新类别进行重新训练或参数调整。实验结果表明,在MVTEC和MPDD基准上,所提出的方法在AUC中优于最先进的FSAD方法。
translated by 谷歌翻译
随着传感技术的进步,多元时间序列分类(MTSC)最近受到了相当大的关注。基于深度学习的MTSC技术主要依赖于卷积或经常性神经网络,主要涉及单时间序列的时间依赖性。结果,他们努力直接在多变量变量中表达成对依赖性。此外,基于图形神经网络(GNNS)的当前空间 - 时间建模(例如,图形分类)方法本质上是平的,并且不能以分层方式聚合集线器数据。为了解决这些限制,我们提出了一种基于新的图形汇集框架MTPOOL,以获得MTS的表现力全球表示。我们首先通过采用通过图形结构学习模块的相互作用来将MTS切片转换为曲线图,并通过时间卷积模块获得空间 - 时间图节点特征。为了获得全局图形级表示,我们设计了基于“编码器 - 解码器”的变形图池池模块,用于为群集分配创建自适应质心。然后我们将GNN和我们所提出的变分图层汇集层组合用于联合图表示学习和图形粗糙化,之后该图逐渐赋予一个节点。最后,可差异化的分类器将此粗糙的表示来获取最终预测的类。 10个基准数据集的实验表明MTPOOL优于MTSC任务中最先进的策略。
translated by 谷歌翻译
多变量时间序列预测,分析历史时序序列以预测未来趋势,可以有效地帮助决策。 MTS中变量之间的复杂关系,包括静态,动态,可预测和潜在的关系,使得可以挖掘MTS的更多功能。建模复杂关系不仅是表征潜在依赖性的必要条件以及建模时间依赖性,而且在MTS预测任务中也带来了极大的挑战。然而,现有方法主要关注模拟MTS变量之间的某些关系。在本文中,我们提出了一种新的端到端深度学习模型,通过异构图形神经网络(MTHETGNN)称为多变量时间序列预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量被视为图形节点,并且每种类型的边缘表示特定的静态或动态关系。同时,引入了时间嵌入模块的时间序列特征提取,其中涉及具有不同感知尺度的卷积神经网络(CNN)滤波器。最后,采用异质图形嵌入模块来处理由两个模块产生的复杂结构信息。来自现实世界的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
在许多现实世界应用中,基于图表编辑距离(GED)等指标(GED)等图表之间计算相似性得分的能力很重要。计算精确的GED值通常是一个NP硬性问题,传统算法通常在准确性和效率之间实现不令人满意的权衡。最近,图形神经网络(GNNS)为该任务提供了数据驱动的解决方案,该解决方案更有效,同时保持小图中的预测准确性(每图约10个节点)相似性计算。现有的基于GNN的方法分别嵌入了两个图(缺乏低水平的横向互动)或用于整个图表对(冗余和耗时)的部署跨冲突相互作用,在图中的节点数量增加。在本文中,我们着重于大规模图的相似性计算,并提出了“嵌入式磨合匹配”框架cosimgnn,该框架首先嵌入和粗大图形具有自适应池操作,然后在污垢的图表上部署细粒度的相互作用,以便在污垢的图形上进行污垢的互动最终相似性得分。此外,我们创建了几个合成数据集,这些数据集为图形相似性计算提供了新的基准测试。已经进行了有关合成数据集和现实世界数据集的详细实验,并且Cosimgnn实现了最佳性能,而推理时间最多是以前的Etab-The-The-The-ART的1/3。
translated by 谷歌翻译
多变量时间序列(MTS)预测是许多领域的重要问题。准确的预测结果可以有效地帮助决策。迄今为止,已经提出了许多MTS预测方法并广泛应用。但是,这些方法假设单个变量的预测值受到所有其他变量的影响,这忽略了变量之间的因果关系。为了解决上述问题,我们提出了一种新的端到端深度学习模式,称为本文的神经格兰特因果关系图形神经网络(CAUGNN)。要在变量间的因果信息中表征,我们在模型中介绍了神经格子因果关系图。每个变量被视为图形节点,每个边缘表示变量之间的随意关系。另外,具有不同感知尺度的卷积神经网络(CNN)过滤器用于时间序列特征提取,其用于生成每个节点的特征。最后,采用图形神经网络(GNN)来解决MTS产生的图形结构的预测问题。来自现实世界的三个基准数据集用于评估提议的Caugnn。综合实验表明,该方法在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译